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Introduction

Burke et al. (2009) report that warming is robustly linked to civil war in Sub-Saharan Africa (SSA).
Their analysis builds on an earlier article by some of the same authors that found negative rainfall
deviation to increase civil war risk through its adverse impact on economic growth (Miguel,
Satyanath & Sergenti, 2004). Although the most recent article departs from the original's
instrumental variable approach and its non-result for rainfall undermines the earlier conclusion, both
studies deserve credit for addressing an under-researched area and for innovative use of
meteorological data in conflict research. Moreover, their conclusion seems to corroborate
widespread notions about a powerful connection between environmental degradation and armed
conflict.

A crucial question remains, however; is the reported link between temperature and civil war
robust? A recent study by Buhaug (2010) addresses this question by conducting two complementary
tests: adjusting the model specification and using alternative measures of climate variability and civil
war. The claimed finding passed neither of these tests. This paper documents a wider set of
sensitivity tests that provide further proof of the empirical disconnect between climate variability
and civil war outbreak, incidence, and severity.*

Sensitivity of Baseline Model

Influence diagnostics

We start the sensitivity analysis by replicating Burke et al.’s Model 2, where current and last-year
estimates of temperature and precipitation are regressed on major civil war incidence (baseline
Model 1 in Table 1). The model is estimated through ordinary least squares (OLS) regression with
country fixed effects and country-specific linear time trends. The positive and marginally significant
effect for current-year temperature is reproduced. We also estimate a model without the climate
variables, containing only the country dummies and linear trend terms (Model 2).

! Note that we only consider short-term effects of climate variability here, similar to Buhaug (2010), Burke et al.
(2009), Miguel, Satyanath & Sergenti (2004), and others. A non-result in this analysis does not preclude the
possibility that climate might be related to peace and security in other, more subtle ways.



Table 1. Baseline model and model without climate, 1981-2002

(1) (2)

Baseline w/o climate
Temperature 0.043*

(0.022)
Temperature 4 0.013

(0.023)
Precipitation -0.023

(0.052)
Precipitation 0.025

(0.049)
Intercept -1.581* 1.168

(0.854) (.)
Country fixed effects Yes Yes
Country time trends Yes Yes
R 0.66 0.66
Civil war observations 98 98
Observations 889 889

Note: OLS regression estimates with country fixed effects and time trends; standard errors in
parentheses. ** p<0.05, * p<0.1.

The dependent variable as operationalized by Burke et al. has 98 positive observations.
Model 1, which is identical to Burke et al.’s Model 2, contains 84 variables, almost one covariate per
conflict observation. This raises two interesting questions: How much extra information does each
variable bring to the table, and, are there any observations that exercise undue influence on the
outcome? The answer to the first question is not comforting. When the fixed effects and time trends
are included, the temperature effect is already accounted for. In fact, in a regression model with
temperature as the dependent variable the remaining variables (lagged temperature, country fixed
effects, and linear time trends) explain 99.3% of the variation. A model with only lagged temperature
on the right-hand side still explains 98.45% of the variation in temperature. And a model with fixed
effects and trend terms only explains 99.23% of the variation. This is clear indication of prevalent
multicollinearity structures in the data.

In a situation with few observations of interest, some observations are likely to exercise
overly large influence on the regression line. Table 2 lists the six most influential cases in Model 1
based on the DFBETA statistic for temperature (current year). DFBETA measures the impact of each
observation on the estimated effect of a covariate. A rule-of-thumb critical DFBETA value is 2/vn. In
our case, this amounts to 0.07; observations with higher values exert disproportionately large
influence on the parameter coefficient. The far right column gives the coefficient for temperature if
the given observation is dropped from Model 1 (recall that the original coefficient was 0.043). As we
incrementally remove a few highly influential observations, the effect of temperature decreases
dramatically. Since the fixed effects effectively control for average temperature in the period, it is not
surprising that almost all of these observations are from years that were warmer than the country
average.



Table 2. Influential observations

Country Year DFBETA Temp Temp (t-1) Coef.
Guinea-Bissau 1998 0.410 27.9 27.3 0.034
Sierra Leone 1998 0.305 27.2 26.3 0.027
Chad 1990 0.280 27.5 26.2 0.020
Congo, Republic of 1998 0.245 25.3 24.7 0.015
Sudan 1994 0.189 27.2 27.5 0.010
Chad 1987 0.162 27.3 26.9 0.006

Removing the individual observations that are the clearest examples of a statistical link
between temperature and conflict may not be warranted; it could be that these cases are important
examples of how warming are causally related to civil war incidence. A closer look at these
observations does not seem to support such an assumption, however.

The conflict in Guinea-Bissau was a serious conflict with wide-ranging implications, although
the number of fatalities was rather modest in comparison with other consequences of the conflict. In
fact, this case is wrongly coded as civil war in Burke et al.’s replication data as updated information
has lead to a downgrading of this conflict in recent versions of the UCDP/PRIO Armed Conflict
Dataset.? One of the more immediate sources of this conflict was the demand from Senegal that
rogue officers in Guinea-Bissau’s army should cease supporting Senegalese rebels. When President
Veira tried to enforce a ban, he was ousted by the so-called Military Junta for the Consolidation of
Democracy, Peace and Justice, whereupon Senegal and Guinea intervened on Veira’s side and the
conflict escalated.

Sierra Leone, 1998, is another case of large-scale foreign intervention. A joint coup by former
rebels and military officers in 1997 replaced the government of Kabbah, in an attempt to avoid the
demobilization demanded by the Abidjan agreement. The coup was opposed by a regional
intervention force (ECOMOG), led by Nigeria. In January 1998, more than 10,000 professional
soldiers were present in Sierra Leone. In March 1998, the Kabbah government was reinstalled.

The two observations in Chad, 1987 and 1990, are part of the same conflict. What makes the
fatalities for these two years stand out is, apparently, the involvement of Libya and France. A highly
fractionalized and utterly poor country, Chad has seen more or less continuous conflict for the last 45
years. Some years have peaked, such as 1980, 1987, 1990, and 2006, with Libya and France backing
various and changing factions either financially or military. Epitomizing the role of foreign powers in
Chad, the current president, Deby, was installed with the help of Libya and Sudan and has managed
to hold on to power with the support of France.

The civil war observation in Congo in 1998 was also very much part of an ongoing conflict. In
fact 1997 was the peak year in this conflict in terms of fatalities. While the conflict between the
Ninjas, Cobras, and Coyotes had been going on for years, the escalation during the summer of 1997
led to international involvement from Angola and Chad, the latter possibly under the financial
influence of France and Elf-Aquitaine. Several Angolan rebel movements had been based in Congo,

? Guinea-Bissau perfectly illustrates the uncertainty in how civil wars are coded (cf. footnote 5). The 1998 coup
in Guinea-Bissau with the resulting armed conflict drove several hundred thousands of people away from their
homes, and early estimates indicated that more than 1,500 people were killed. More recent estimates are
closer to 500. Accordingly, this conflict has been recoded minor civil war (less than 1,000 annual deaths) in
recent versions of the UCDP/PRIO Armed Conflict Dataset. Had Burke et al. (2009) used the latest update of the
conflict data, this case would not be coded as a civil war and the parameter estimate for temperature would
have been reduced by more than 20%.



and Angola saw this as an opportunity to remove that particular problem. Sudan, 1994, is the odd
case on this list as this is an observation without civil war incidence (although the conflict is Southern
Sudan caused at least 500 casualties that year according to the PRIO Battle Deaths dataset; Lacina &
Gleditsch, 2005).

A common feature among all of these influential cases is an omitted variable: foreign
intervention. The external dimension of the conflicts, which fail to be captured by the trend variables
or the fixed effects dummies, is likely to have a significant bearing on civil war severity. Another
apparent commonality between these cases is the scarcity of references to climate anomalies and
loss of agricultural income in news reports and narratives of the conflicts.? It is unclear to us why the
causal effect of temperature on civil war would depend on third-party intervention, as Table 2
suggests.

Civil war operationalization

Disregarding for now the issues raised above, we next turn to the operationalization of the
dependent variable (DV). As pointed out by Buhaug (2010), Burke et al. (2009) apply a rather unusual
definition of civil war, counting only the country years in which the number of battle-related deaths
(BRD) crosses the 1,000 fatalities threshold. In some cases, this implies that the first year of civil war
occurs several years after the conflict started (e.g., Sierra Leone 1998 vs. 1991); in other cases, civil
wars enter and exit the dataset with little change in the underlying conflicts (e.g., Rwanda, whose
two recent spells of conflict (1990-94 and 1997-2002) are coded as civil war in 1991-92, 1998, and
2001 only.*

Although the causal mechanisms are never fleshed out in detail, Burke et al. hint at an
individualistic political economy explanation for the positive effect of temperature: higher
temperatures depress rural incomes and lower the opportunity cost of joining a rebellion. This
should lead to a higher number of rebels and, consequently, fiercer battles with government forces.
Apparently, there should be hardly any time lag to this causal process; battlefield intensity reportedly
goes up in the same calendar year as warming is recorded. If this reasoning is descriptive of a general
pattern — if warming has a positive and measurable impact on the severity of ongoing conflicts — it
should show up in our data also when we apply slightly different casualty thresholds for major civil
war. Even more appropriate, however, would be to demonstrate that the annual rate of BRD goes up
with higher temperatures.’

3 Cf., the Uppsala Conflict Data Program’s (UCDP) online conflict database,
http://www.pcr.uu.se/research/ucdp/database/.

* Burke et al. also include an indicator of civil war onset. In their interpretation, Rwanda experienced a new civil
war outbreak in 1991, 1998, and 2001. In all three instances, the ACD dataset (the source of their conflict
variables) codes Rwanda in conflict in the previous year.

> One should also remember that the dependent variable is not measured without error. The data used in this

paper, as well as in Burke et al. (2009) and most other recent civil war studies, are based on (various versions
of) the UCDP/PRIO Armed Conflict Dataset (Gleditsch et al., 2002; Harbom & Wallensteen, 2010). Behind this
dataset is a contentious decision to err on the conservative side. If a conflict is listed as a war (at least 1,000
annual BRD), then the coders behind that decision is quite certain that the observation in question indeed
qualifies as a ‘war’. The fact that a conflict is not listed as a war does not necessarily imply that it wasn't.
Hence, it is widely considered a good idea to verify the robustness of any analysis by using different levels of
severity thresholds.



Table 3 includes five models with alternative DVs. The first model (3) is a replication of Model
1 above, the only modification is that the dependent variable (civil war with at least 1,000 BRD in
year) is generated from the PRIO Battle Deaths Dataset v. 3.0 (Lacina & Gleditsch, 2005) rather than
directly from the UCDP/PRIO Armed Conflict Dataset (Gleditsch et al., 2002). Due to slight differences
in coding criteria (see Wischnath & Gleditsch 2010 for more on this) and aggregation method, the
Battle Deaths data indicate a higher number of observations with the specified severity level than the
ACD data (125 vs. 98); yet, the finding from Model 1 is reproduced where the coefficient for
temperature (current year) is almost identical to the original result. Models 4-5 use alternative
binary DVs where the minimum severity threshold for civil war is halved (500 BRD) and doubled
(2,000 BRD), respectively. Finally, Models 6-7 use count and logged BRD counts as continuous DV. In
all other respects, these models are identical to Model 1, including country fixed effects and linear
time trends.

Table 3. Alternative civil war definitions and battle deaths data, 1981-2002

(3) (4) (5) (6) (7)

War years War years War years BRD BRD
1,000+ 500+ 2,000+ count log
Temperature 0.044* 0.008 0.003 -248.4 0.113
(0.024) (0.024) (0.017) (261.4) (0.222)
Temperature ¢ 0.010 -0.001 -0.008 -19.5 -0.120
(0.031) (0.035) (0.023) (268.7) (0.218)
Precipitation -0.010 0.048 -0.042 -380.5 0.692
(0.070) (0.072) (0.057) (690.6) (0.503)
Precipitation 0.054 0.057 -0.052 -96.8 0.191
(0.051) (0.075) (0.054) (711.6) (0.506)
Intercept -1.619 -0.511 0.233 7,350.4 -3.066
(1.214) (1.445) (0.777) (13,695.7) (10.118)
Country fixed effects Yes Yes Yes Yes Yes
Country time trends Yes Yes Yes Yes Yes
R’ 0.67 0.69 0.62 0.54 0.72
Civil war observations 125 173 85 226 226
Observations 889 889 889 889 889

** p<0.05, * p<0.1

The reported risk-inducing effect of temperature disappears completely once we impose
minor adjustments to the original model. The reduction in the size of the regression coefficient for
current-year temperature when we shift the severity threshold downwards (Model 4) or upwards
(Model 5) is little short of astonishing. The models that replace the binary indicator of major civil war
with a continuous measure of BRD leave a similar impression. All four climate parameters are
negatively related to the absolute number of annual fatalities, other factors accounted for (Model 8).
Model 9 uses a log-transformed casualty measure to counter the skewness of the distribution and
reduce possible outlier bias. The coefficient for temperature is now positive again, as expected, but
not distinguishable from zero with an acceptable margin of error.

To further illustrate the sensitivity of the temperature effect to DV operationalization, Figure
1 visualizes the size of the estimated effect of current-year temperature on civil war incidence for
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various BRD thresholds. Evidently, temperature attains a (near) significant coefficient only in a
narrow part of the range of possible cut-off points.

Figure 1. Size of temperature coefficient by civil war severity threshold, 1981-2002
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Note: The black line in the upper part of the figure depicts the size of the estimated effect of temperature
(current year) on civil war incidence for various severity thresholds (horizontal axis). The grey area visualizes
95% confidence interval around the estimate. The lower part of the figure illustrates the frequency of civil war
observations for various severity thresholds. Estimates based on Model 1.

For each stepwise increase in cut-off value for civil war, an observation that was considered
civil war is recoded non-war. So when we move the threshold above 1,000 BRD, an increasing
number of severe armed conflicts are coded into the control group along with minor conflicts and
countries at peace. Introducing an increasingly heterogeneous control group undoubtedly weakens
the results, but the decline seen in Figure 1 is too large to be explained by control group pollution.
The fact that the coefficient becomes negative when the threshold moves beyond 2,500 BRD
indicates that temperature is not associated with very large conflicts.

Sample period

Next, we assess the sensitivity of the climate parameters to changes in the sample period. All models
considered so far have been estimated for the years 1981-2002, the sample period chosen by Burke
et al. (2009). The increase in civil wars throughout most of this period corresponds well with the
contemporaneous warming of the continent. As we know that temperatures have been consistently



high throughout the first decade of the 2000s, we would expect a correspondingly high rate of civil
wars in Sub-Saharan Africa. However, since Burke et al.’s climate measures are unavailable for years
outside their sample period, we created new country-year estimates for the full post-colonial period
in Africa based on high-resolution gridded time-series climate statistics from the University of
Delaware.® We also updated the civil war incidence variable based on v4-2009 of the UCDP/PRIO
Armed Conflicts Dataset. Table 4 shows the results from a set of regression models that are identical
to the model specification for Model 1 except for changes in the temporal coverage.

Table 4. Alternative sample periods

(8) (9) (10) (11)
1981-2002 2003-08 1981-2008 1960-2008
Temperature 0.049** -0.006 0.029 0.013
(0.023) (0.015) (0.020) (0.017)
Temperature -0.002 -0.020 -0.009 -0.019
(0.027) (0.037) (0.025) (0.017)
Precipitation 0.035 0.110 0.042 -0.016
(0.038) (0.105) (0.035) (0.030)
Precipitation 0.054 0.043 0.034 0.004
(0.036) (0.045) (0.028) (0.023)
Intercept -1.331 0.696 -0.412 0.165
(1.186) (0.700) (0.751) (0.787)
Country fixed effects Yes Yes Yes Yes
Country time trends Yes Yes Yes Yes
R? 0.65 0.59 0.56 0.39
Civil war observations 100 8 108 146
Observations 947 264 1,211 1,974

** p<0.05, * p<0.1

Again, we find that the claimed positive and significant effect of temperature on civil war
prevalence is highly tenuous. For the original sample period (Model 8), the UDel temperature
measure indicates a marginally stronger effect on civil war, compared to Model 1. When we expand
the temporal domain to include more recent years (Model 10), however, the size of the regression
coefficient drops by 40% and it is no longer statistically significant. In fact, the isolated effect of
temperature for the most recent years (Model 9) appears to be weakly negative. Finally, neither of
the four climate parameters has a significant bearing on the likelihood of major civil war when the
entire post-colonial Sub-Saharan African sample is analyzed (Model 11).

A further assessment of the sensitivity of the temperature effect to changes in the temporal
domain is illustrated in Figure 2. Here we re-estimate Model 1 for all possible time intervals
(minimum 10 consecutive years) between 1960 and 2008. Darker cells in the matrix indicate larger
estimated effects. There are two evident clusters of sample years where Model 1 would return a
positive coefficient for current-year temperature at least as large as the effect reported in Model 1,
roughly from the early 1970s to the early 2000s. This period corresponds quite well with the years

® See http://climate.geog.udel.edu/~climate/. The UDel climate measures are for all practical purposes identical
(r=0.98) to the climate variables used above.




when civil war and temperature both trended upwards (see Fig.1 in Buhaug, 2010). Note also that
the figure generally indicates that the size of the coefficient is negatively related to the length of the
sample period. Finally, we note that regardless of start year, the coefficient is smaller than the
original result if the period extends beyond 2004.

Figure 2. Size of temperature coefficient for various time periods since 1960
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Note: the figure illustrates how the size of the temperature coefficient varies with temporal domain. Dark gray
cells represent periods where the baseline model would return an estimated effect at least as large as Model 1.
Medium gray cells represent somewhat weaker results whereas light gray cells indicate a small regression
coefficient.
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Marginal impact and predictions

Marginal impact

There are both methodological and substantive causes for concern about the claimed robustness of
the climate-civil war connection. But even if we accept the model specification and measurement of
civil war proposed by Burke et al. (2009), the marginal impact of temperature on civil war risk is — as
we demonstrate in this section — trivial. The coefficient for temperature (current year) in Model 1
indicates that a 1°C increase in temperature corresponds to a 4.3% increase in civil war risk, all else
held constant.” Since the mean conflict propensity in the SSA 1981-2002 sample is 11%, an absolute
increase of 4.3 points appears quite large. Indeed, Burke et al. predict a 54% increase in the incidence
of civil war by 2030 on current temperature trends and conclude that the adverse impact of warming
“appears likely to outweigh any potentially offsetting effects of strong economic growth and
continued democratization” (2009: 20673). But how important is climate variability compared to all
other sorts of factors — political, economic, cultural, demographic, etc. — that influence civil war risk?

There are various ways to interpret the real effect of a variable beyond interpreting
regression coefficients and refer to aggregate probabilities. One method is to assess a given
variable’s contribution to the overall fit of the model, normally through a likelihood ratio or chi-
square test. A natural extension would be to compare and plot predicted values for a model against
predictions for a similar model without the variable of interest. A more demanding test is out-of-
sample prediction, regressing the model on one part of the data and see how well it predicts positive
outcomes in the remaining sample. In the following, we evaluate the performance of the climate
parameters in all of these tests.

A first indication of the feeble substantive impact of temperature and precipitation is given
by comparing Model 1’s explained variance (R?) with the same statistic for a model with only country
fixed effects and country time trends (Model 2). The difference is 0.002 points (R*=0.657 vs. 0.655).
In other words, virtually all explained variance in Model 1 is caused by unknown country features and
trends hidden beneath the specified fixed effects and time trend terms. As a follow-up inspection, we
compare the predicted scores (y) for Model 1 with corresponding predictions from the reduced
model. As illustrated in Figure 3, the estimates are for all practical purposes identical; climate
characteristics have a minuscule impact on individual country years’ estimated likelihood of civil war
incidence (the predictions for these two models correlate at r=0.999).

’ Note that the risk scores are not expressed as probabilities, given that the estimates are derived from a linear
regression model that generates predicted values below 0 as well as above 1.
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Figure 3. Scatter plot of predicted values with and without climate parameters
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Note: The figure plots predicted values of civil war for the baseline model (horizontal axis) and a similar model
without climate parameters (vertical axis).

To get a better grip of the impact of climate variability on civil war incidence for specific
countries, Table 5 lists the ten observations with the highest predicted scores in Model 1 (the plots at
the top right of Figure 3) and corresponding scores from the reduced model. The far right column
gives the relative contribution of the climate parameters. In most cases, the relative impact of
climate on predicted civil war incidence is less than 1% positive or negative. Note also that all these
observations are from the initial years in the sample period with the highest estimates found in 1981.
This is no coincidence; all these countries experienced severe civil war in this period and have strong
negative time trends. Due to the powerful trends, three of the four countries in the table actually
have negative predictions in the final years of the sample period.
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Table 5. Observations with the highest within-sample predicted values, 1981-2002

Country Year Y Model 1 Y Model 1 AY (%)

w/o climate
Mozambique 1981 1.23 1.26 -1.78
Mozambique 1982 1.18 1.19 -1.10
Uganda 1981 1.15 1.15 <0.01
Mozambique 1983 1.15 1.12 2.28
Ethiopia 1981 1.12 1.11 0.75
Angola 1981 1.09 1.10 -0.73
Uganda 1982 1.09 1.09 -0.06
Angola 1982 1.07 1.08 -0.46
Angola 1983 1.06 1.05 0.38
Mozambique 1984 1.05 1.05 -0.28
Predictions

Next, we consider the impact of temperature and precipitation on the model’s ability to predict out
of sample. We start by re-estimating the baseline Model 1 and a reduced model for a slightly shorter
time period, 1981-98 (Models 12 and 13, respectively), and use estimates from these models and
known climatic conditions in subsequent years to predict civil wars that occurred between 1999 and
2002. Table 6 shows that the reported positive and statistically significant coefficient for current-year
temperature is reproduced. In fact, the effect is about 30% larger in the reduced time period. This
comes as no surprise, though; we know that the opposing trends in temperature and conflict are
particularly strong in the final years of the original sample period (Buhaug, 2010). More surprising,
perhaps, is the positive and now significant estimate for precipitation last year. It thus appears that in
this particular period, excess rainfall rather than drought increased the short-term risk of civil war
incidence. This result is at odds with dominant environmental security theories (see Homer-Dixon,
1999 and Kahl, 2006 for examples) and it also counters the main conclusion of Miguel, Satyanath &
Sergenti (2004). While there may be many plausible explanations for this result (e.g., Ciccone, 2010;
see also Witsenburg & Adano, 2009), we prefer not to speculate at this point as the finding evidently
is as sensitive to sample inclusion criteria, operationalization of key dependent and independent
variables, and model specification as the temperature effect. In any case, the significant and quite
large parameter estimates for temperature (current year) and rainfall (previous year) suggest that
Model 12 ought to outperform Model 13 by some margin when it comes to predicting future civil
wars.
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Table 6. Baseline model and model without climate variables, 1981-98

(12) (13)

Baseline w/o climate
Temperature 0.057**

(0.026)
Temperature 0.021

(0.026)
Precipitation -0.009

(0.075)
Precipitation 0.112**

(0.047)
Intercept -1.464** <0.001

(0.628) (<0.001)
Country fixed effects Yes Yes
Country time trends Yes Yes
R 0.68 0.67
Civil war observations 86 86
Observations 728 728

** p<0.05, * p<0.1

Based on the parameter estimates in Models 12 and 13 and updated temperature and
precipitation statistics, we calculate country-specific predicted values for the subsequent four years.
The continuous predictions were converted into a binary war/no war categorization by using y=0.5
as the classification criterion. Accordingly, observations with predicted values above 0.5 (analogous
to a >50% estimated probability in a maximum likelihood model) are treated as civil war and lower
values predict non-war. Table 7 shows the classification table for the 1999-2002 period. The two
columns to the left show the classification based on Model 12. According to this model, eight of the
161 country-years should experience civil wars during the four-year period (y>0.5). Five of these
predictions are accurate. Since another seven wars are not picked up, the model with the climate
variables correctly predicts five of twelve war country years. This yields a sensitivity of 5/12=0.417.
The remaining 153 country-years have y<0.5 which corresponds to no war. 146 of these were
accurate while three non-war observations are missed (false positives). The specificity of the
classification, then, is 146/149=0.980.

The two columns to the right show that the sensitivity of the model without the climate
variables (Model 13) is identical to the baseline model — five of twelve wars are correctly predicted —
but the specificity is slightly higher (147/149=0.987). In other words, the climate variables lead the
model to produce more false positives but not more true positives. This is further testimony of the
miniscule contribution of climate even in the specification preferred by Burke et al. (2009).
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Table 7. Classification table for out-of-sample prediction, 1999-2002

Model 12 Model 13
Observed Observed Observed Observed
war non-war war non- war
Predicted war 5 3 5 2
Predicted non-war 7 146 7 147
Total 12 149 12 149

Classification tables are often useful for illustrating and comparing the predictive ability of
models, but they could be sensitive to small changes in the choice of cut-off point, much in the same
manner as the severity threshold for the civil war variable (Table 3). A Receiver Operating
Characteristic, or ROC curve, allows assessing the predictive contribution of the climate parameters
across the full range of possible cut-off points [0, 1] (see Hosmer & Lemeshow, 2000). ROC curves are
generated by plotting sensitivity against 1—specificity, comparing the rate of true positives with the
rate of false positives. The better a model predicts, the more steeply the curve rises and the larger
the area under the curve (AUC, expressed as share of the total area of the plot). Figure 4 plots ROC
curves for the same pair of models as presented above; the baseline climate variability model and a
model with fixed effects and time trends only, regressed on the SSA sample for 1981-98 and then
used for predicting civil war, 1999-2002. Again, we find that Model 12, which includes measures of
temperature and precipitation, produce almost identical predictions to the simpler Model 13; the
difference in AUC scores is statistically insignificant.?

Figure 4. ROC graphs for model predictions with and without climate variables, 1999-2002
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& In fact, in tests not shown we find that Burke et al.’s Model 3, which includes a limited selection of time-
varying controls and uses a common time trend instead of the country trends, performs significantly worse in
terms of AUC scores than a similar model without the climate variables (p=0.015).
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Conclusion

In conclusion, the sensitivity assessments documented here reveal little support for the alleged
positive association between warming and higher frequency of major civil wars in Africa. Instead, this
paper adds further substance to the critique raised by Buhaug (2010). In almost all specifications, for
almost all possible civil war definitions, and for almost all years in post-colonial Africa, climate
variability is statistically unrelated to civil war occurrence. This does not preclude the possibility that
adverse climates may have other, more subtle and long-term effects on political stability, economic
prosperity, and peace. We also should not take results reported here as evidence that climate
anomalies cannot trigger other forms of societal upheavals, such as urban riots (e.g., in response to
accelerating food prices) and rural intercommunal fighting (e.g., farmer-herder clashes over access to
freshwater or fertile land). More research is needed to get a better understanding of the full range of
possible social dimensions of climate change.
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Sensitivity Analysis of Climate
Variability and Civil War

Burke et al. (2009) report that
warming is robustly linked to
civil war in Sub-Saharan Afri-
ca (SSA). Their analysis builds
on an earlier article by some of
the same authors that found
negative rainfall deviation to
increase civil war risk through
its adverse impact on econom-
ic growth (Miguel, Satyanath
& Sergenti, 2004). Although
the most recent article departs
from the original’s instrumen-
tal variable approach and its
non-result for rainfall under-
mines the earlier conclusion,
both studies deserve credit for
addressing an under-
researched area and for inno-
vative use of meteorological

data in conflict research.
Moreover, their conclusion
seems to corroborate wide-
spread notions about a power-
ful connection between envi-
ronmental degradation and
armed conflict.

A crucial question remains,
however; is the reported link
between temperature and civil
war robust? A recent study by
Buhaug (2010) addresses this
question by conducting two
complementary tests: adjust-
ing the model specification
and using alternative meas-
ures of climate variability and
civil war. The claimed finding
passed neither of these tests.

This paper documents a wider
set of sensitivity tests that pro-
vide further proof of the em-
pirical disconnect between
climate variability and civil
war outbreak, incidence, and
severity.

Halvard Buhaug, Havard Hegre & Havard Strand
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